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ON A COROLLARY OF THE NOETHER THEOREM FOR 
THE TWO-DIMENSIONAL PROBLEM OF THE MAYER TYPE * 

K. G. CARARV 

The group-theoretical approach to the construction of differential laws of conserva- 
tion is considered for two-dimensional Mayer type problems. Approach is based on 
the use of the Lie-- Ovsiannikov theory and the Noether theorem /4,5/ which is the 
fundamental tool for deriving the laws of conservation for uncontrolled physical 
processes (see, e.g., /6-9/J. Certain classes of optimally controlled processes 
were earlier considered in /lo-12/ from the point of view of the Noether theory. 
Sufficient conditions of existence of first integrals of two-dimensional variational 
problems of the Mayer type are obtained, As an example, the problem of heat transfer 
optimization in the boundary layer of a compressible gas is considered. 

1. The Noether theorem for the Mayer invariant problem. Let us consider the 
functional 

5 = s) f (s, a*, ua”) ds (1: = 1, . . ) n) 
(1.1) 

where s is the length of arc; u,' = du’ids; u”(x,y) are continuously differentiable functions 
which satisfy in some simply connected region /j the differential relations 

YJ = (ailrju" + ai~) n,i -e (b& + bil) u; T C,,jllk -1. & = 0, (i, j, k = 1, . . . , n) (1.2) 

where eiki, aij, bib-j, Q, ch.j, and ci are continuously differentiable functions of variables r and 

!i. Along the contour 1 are specified the isoperimetric 

l-i = 4 gi (s, Lb’:, U,k) ds (i = 1. . . . , m) 

i 
(1.31 

and boundary conditions 

9' (s, uli, 43 .-= 0 (j == 1, . . . ( p < I?. f 1) (1.4) 

Note that the number of degrees of freedom of the variational problem is in region D 
equal zero. The boundary 1 of region U and the boundary values of the sought functions 
u’(r, IJ), where point (z,Y)~ 1 /13-15/, are taken as the control. 

Use of the Lagrange formalism leads to the investigation for extremum of the functional 

where pi, 439 and hh. are Lagrange multipliers. 
It was shown in /lb/ that the necessary and sufficient condition of invariance of the 

integral S'z with respect to group G, generated by the Lie algebra of infinitesimal operators 

(a = 1, . . . . r; k = 1, . . . . n) (1.6) 

where 9, .., e' are coordinates of the direction vector of one-parameter group, and X, are 
basis vectors, is of the form 

(1.7) 

where X* is the operator of the continued group whose coordinates are calculated by formulas 
of the theory of continuation /3/ 

k E,, &dua - I X_l ‘J tt."D E - II ‘io : c X># , &ii-- o,g,:; - ti.kDv~l - 8) “D Y B 5 1, (1.8) 

D,+--;-u,“-$+b,~-$, n,=++g&+k~~~ 

It follows from /11/ that the functional V, is invariant with respect to group G," 
admitted by system (1.2). We represent the determining equations for the coordinates of that 
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group in the form /3/ 

(1.9) 

_$ abi' 
u’; $- dy 

dckj 
uyi + dy uh’ + $ 

P,,j = .,,juxi $ biklu,’ f ckJ; i, j, k, s = 1, . . . , n 

where &,," and &," are determined by formulas (1.8) in which the total differentiation 

operators 

are substituted for operators D, and D,, 
According to /5,12/ the following theorem holds for the quasilinear relationships (1.2). 

The Noether theorem. The invariance of functional V, with respect to group G," 

impliesthe law of conservation 

D, {hj (a& + at’) (s,,’ - u,“‘& - uvk&,)} i- D,{~J (hs’U* f bk’) (Ettk - uzkE, - %k&,)} = 0 (1.11) 

We say that the variational problem (l.l)- (1.4) admits the first integral, if Eq. (1.11) 

isintegrable exactly once with respect to the x- or y-coordinate. 

2. Sufficient conditions of existence of first integrals. The construction 

of laws of conservation (1.11) necessitates the determination of the coordinate of the in- 

finitesimal operator of group G," by solving the determining equations (1.9). Local Lie 

groups which are admitted by system (1.2) in particular cases are known. They can be used 

in the formulation of respective variational problems of derivation of conservation laws. 

Below, we shall consider the case frequently encountered in applications,when allcoefficients 
of system (1.2) are independent of r or y. We assume for definiteness that 

aa;,, dlzij ab{, abij ackJ dCj -=-=-=- 
av av ay 

ay zdyzdyz - 0, (i,j,k=l,..., n) (2.1) 

It now follows from Eqs. (1.9) that E, = &,kEO, and Ebl = a, i.e. that the functional 

V, is invariant with respect to the group of transfers on coordinate y. If some function- 

al in a variational problem with a single independent variable is invariant with respect to a 

group of transfers relative to that variable, it is possible to obtain the first integral of 

the variational problem /4/. But in the two-dimensional case the invariance of functional V, 
with respect to a group of transfers on coordinate I or y does not necessarily guarantee the 

existence of the first integral. 
If relations (1.2) do not contain terms with derivatives of uXa of some fixed a (such as, 

for example, boundary layer equations /17/), then by virtue of (2.1) the conservation law 

(1.11) assumes the form 

D,A t- D,B = 0 (2.2) 

A = ykh, (a,,jua + ski) (1 - sak) (2.3) 

B = UVkhl @,,'a' -i- bk’) (k, j, s = 1, . . , n) (2.4) 

where &zk is the Kronecker delta. 

The Euler-Lagrange-Ostrogradskii equation for function ua (obtained by equating to 
zero the expression at variation 6ua) becomes 

$ (si,juXi (1 - 66) + biduu’ + c,‘) - D, {Aj (baijui + b,j)} = 0 (2.5) 

We stipulate that 

aiaf zz bi,' .= Cu' G 8 (i, j = 1, . . . , n) (2.6) 

Then formulas (2.5) and (2.3) assume respectively form 

hjbiaiuyi - b,jaLj I ay = 0 

A = hj (1 - &') Iu'cL~,~~+,' (1 - hai) -6 u;aJ 

where (i,j,s= 1, . . . . n). 

Let for some fixed pfa 

(2.7) 

(2.8) 

a,sj = 0, (ajpjps,isjj # 0, bia* = aipi (2.9) 
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a,j E 0, (Upj)'Sj' # 0, b,’ z= ap! (2.10) 

Then from (2.8) by virtue of (2.7) we have 

From (2.2) we now have 

0, {ba’unhj) + ugkhjbkijui (1 - Sak) + u,,lihjbki = g (x) (2.11) 

where g(x) is an arbitrary integration function which is determined by the transversality con- 
ditions /14,15/ with allowance for the boundary conditions (1.4). 

Thus we have the following corollary of the Noether theorem. 

Corollary. If system (1.2) admits the one-parameter group x' -= z,y' = y + E, and 
nk‘ zz Ilk conditions uGyj = uaj = 0 and, also, conditions (2.6), (2.9), and (2.10) are satis- 

fied, the variational problem (l.l)- (1.4) admits integral (2.11). 

3. Optimization of heat transfer in the boundary layer of compressible 
gas. Equations of compressible gas boundary layer whose coefficient of viscosity linearly 
depends on temperature expressed in the Dorodnitsyn- Stewartson variables 5 and r) is of the 
form /17/ 

(3.1) 

I-3 (k - 1) Me2/2 
--_- 

: I +(k - 1) MeV2 aq* 

We assume the boundary conditions in the form 

n = 0, zi = 0, V = V, {j), s = s,, (3.2) 

9-m. rJ--+Lie (5), S-0, 

5 = 0, u = U(q), s = s (9) 

where (i (5, q) and V(E,q) are the longitudinal and transverse velocity components in an 
imaginary stream, S&q) is the enthalpy, Y is the kinematic viscosity coefficient, cr is the 
Prandtl number, and k is the adiabatic constant. The subscript 1 relates in (3.1) and (3.2) 
denotes an adiabatically and isentropically frozen state of gas in the external stream, and 
subscript e relates to the external stream. 

We have the following optimal problem /15/. Find among the continuous controls PO (8 
that satisfy Eqs. (3.1) and boundary conditions (3.2) one that ensures the minims quantity 
of heat 

transmitted from the hot gas to the wall surface with a given capacity of the cooling system 

where a is a known constant. 
Using the notation 

we represent system (3.1) in the equivalent form 

(3.3) 

(3.4) 

1 au5 I-: (k - 1) M,‘P de!,8 
x I -+- (k - 1) MOW --%i- = ’ 

The basic functional is of the form 

where D is the region bounded by lines 

q=o, 5=O,f=L, q-00 

Theorem. The variational problem (3.1)- (3.4) of boundary layer optimal control for 
any U,(E) admits the first integral. 
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The remaining coefficients are zero. It follows from (3.6) that a=1 and p= 2, hence 

all conditions of the corollary are satisfied. Consequently in conformity with (2.11) there 

exists the first integral 

-&%$)+Ti-$ =g(f) (i= 1,...,6), T, = h,UP - h, - 2U=h,l ue2 

T, = h,, T, = ?.,U= - h,, 
(k - 1)M?/Z 

T, = -v,h,, T, = - G-lv,h,, Ts = 0-l (1 - o)v& 1 + (k _ ,I Me”/2 

Euler-Lagrange-Ostrogradskii equations and the boundary conditions are of the 

2U' 
-u(i'~--(*,U*)_~+h,~+~t-~=O 

> - IJee 

au1 au= ah2 dU 
h,,5+k4----o h,U e 

a a 
atl aq - f e ,jf + ~@d’? + F(h,li’ - h,) = 0 

ahI 
S,SVlT =O, *5++-+=o, l--c (k - 1) Meal2 8~ 

h6-'1-x l+(k-11)Mr912 at) c --=o 

rl = 0, 21,aV,2 - h, = 0, ?., = -ko i v,, A, = 0, ‘I-+~. J.+O, h, --a 0, a, + 0) 5 = L, h, = x, = 1, 

(3.7) 

form 

(3.8) 

=o (3.9) 

Assuming the existence of lim,__ ah,/&) and lim,+_ a&Ian, by virtue of whichfromthebound- 

ary conditions in (3.9) and the last three equations (3.8), we obtain from Eq. (3.7) g(5)=0. 

We note in conclusion that a direct application of integral (3.7) for determining the 

optimal control V,(5) is the subject of special investigation. Here, we shall only point out 

that the first integrals of variational problems of optimal control of incompressible fluid 

laminar boundary layer obtained earlier /10,18/ had substantially eased the task of finding 

respective optimal controls. 
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